
Excel Services

Develop A Calculation Engine For Your Apps

Vishwas Lele and Pyush Kumar

This article discusses:

Code download available at: ExcelServices2007_08.exe (226KB)

O
rganizations use Microsoft® Excel® to perform complex calculations and to visualize information using
charts, pivot tables, and the like, and to perform many other custom tasks. But in the past, if you wanted
to implement a calculation engine, you needed to enlist the services of a developer who would use
algorithms provided by your business analysts to design the code. Now, with the Excel Services
technology in Office SharePoint® Server 2007, business analysts themselves can implement the
calculation engine formulas they need, reducing the cost of implementation and making maintenance of
the calculation algorithms easier than before. In addition, with Excel Services the custom algorithms in
an Excel workbook can run on a Web server, allowing users to access them remotely. As you might
imagine, this means many more users can take advantage of the software from many more locations.

Excel Services Architecture

Let’s see how the Excel Services architecture enables such flexibility. Excel Services consists of three
tiers—a Web front end, an application server, and a database (see Figure 1). The SharePoint content
database forms the database tier. To enable the server-side Excel behavior, you place the workbook at a
trusted SharePoint location or on a network file share. Some functionality (such as additional security
features) is only available through SharePoint.

l Excel as a server-based application
l The Excel Services architecture and APIs
l Creating managed user-defined functions
l Building custom solutions with Excel Services

This article uses the following technologies:

Excel Services

Contents

Excel Services Architecture
The Excel Services API
A Custom Solution with Excel Services
The Excel Pre-Compiler
The Excel Web Service Client
Digging into the Code
Performance and Scalability

Page 1 of 9Excel Services: Develop A Calculation Engine For Your Apps

5/22/2017mk:@MSITStore:C:\Users\Vishwas\Desktop\MSDNMagazineAugust2007en-us.chm::/Ex...

The application server consists of Excel Calculation Services, which is responsible for loading a given
workbook and performing any required calculations. Workbook instances can be connected to external
data sources.

The Web front end is responsible for rendering the relevant portions of the workbook in HTML via a
SharePoint Web Part. The Web front end is also responsible for exposing the Web service endpoints that
allow remote access to the Excel Calculation Services.

An important aspect of the Excel Services architecture is that it is integrated with SharePoint 2007. As
noted earlier, to enable some of the server-side behavior the workbook needs to be stored inside a
SharePoint content database. This makes it possible to take advantage of SharePoint content
management features such as versioning, check-in/check-out, and security roles and permissions in the
context of Excel workbooks.

Similarly, the Excel Calculation Services is based on the SharePoint Shared Service Provider (SSP)
model. SSP is a mechanism for packaging SharePoint functionality as a service that makes it easy to
administer and use across different sites. As a result, it is possible to reuse an Excel Calculation Service
instance across SharePoint sites, as well as manage it via a SharePoint administration site.

You should also note that Excel Services imposes some restrictions over Excel. Macros and unmanaged
code-based add-ins, such as Visual Basic for Applications (VBA) code are not supported by Excel
Services. Instead, Excel Services supports managed server-side user-defined functions (UDF), an
interface that allows invocation of custom calculations from inside a server-side workbook.

Later in this article, we will look at a UDF code example. The restriction related to unmanaged code
add-ins can be overcome by building a managed UDF to wrap unmanaged code. The restriction on the
use of VBA and macros is hard, but it may be a boon in disguise as it prevents the server-side
calculation logic from becoming unwieldy.

The Excel Services API

Now let’s look at the Web service-based Excel Services API used to interact with a server-side

Figure 1 Excel Web Services Architecture

Page 2 of 9Excel Services: Develop A Calculation Engine For Your Apps

5/22/2017mk:@MSITStore:C:\Users\Vishwas\Desktop\MSDNMagazineAugust2007en-us.chm::/Ex...

workbook, using the code snippet in Figure 2 as the basis for the discussion that follows. Note that code
has been elided for clarity.

To begin, we need to make the workbook accessible to the clients. Any workbook saved to a location on
the server can be accessed through the Excel Service API, a part of
Microsoft.Office.Excel.Server.WebServices. The Excel 2007 client makes publishing the workbook
easier through publish functionality. The benefit of using the publish mechanism is that you can control
which parts of a workbook (sheets, views, pivot tables, and so on) are accessible via the Excel Services
API. The primary class in the API is the ExcelService class, shown in Figure 2. This class represents an
in-memory, server-side instance of a workbook. To enable multiple users to interact concurrently with a
workbook, a session-based access model has been implemented. Each user opens a separate session with
a workbook using the OpenWorkbook method of the ExcelService class. The OpenWorkbook method
returns a unique session ID associated with the opened session. This session identifier needs to be
supplied when invoking any subsequent methods to interact with the opened workbook. To set a named
range inside a workbook, you can use the RangeCoordinates class to define the boundaries of the named
range. The SetRange takes RangeCoordinates and the corresponding array containing values to be
passed in as parameters. A variation of the SetRange method is the SetRangeA1 method, which uses
Excel range specification "A1" instead of the range coordinates used by SetRange. Once all the required
range values have been specified, CalculateWorkbook can be invoked to force the workbook to compute
the formulas. It is possible to cancel the most recent CalculateWorkbook method by invoking a
CancelRequest method. You can use the GetRange method to obtain calculated values from a range in
the open workbook. Once all the calculated values have been retrieved, you close the workbook session
using the CloseWorkbook method.

Excel Services can be extended by adding UDFs, which are accessible as cell formulas similar to the
built-in Excel functions. To create a UDF, you need to create a Microsoft® .NET Framework assembly
that contains at least one class that is marked with the UdfClassAttribute and at least one method marked
with the UdfMethodAttribute. Please refer to the code snippet below. Here we define ConvertToUpper
as a UDF method. After appropriately registering the UDF, the ConvertToUpper function can be inside
an Excel Services workbook instance:

using Microsoft.Office.Excel.Server.Udf;

[UdfClass]
public class Util
{
 [UdfMethod]
 public string ConvertToUpper(string name)
 {
 return name.ToUpper();
 }
}

We’ve covered only a small portion of the Excel Services API here. For additional details, refer to the
MSDN®documentation.

A Custom Solution with Excel Services

The primary motivation for developing a custom solution is to allow business analysts to author
calculations (such as financial models) directly as Excel formulas. Until now, business analysts have
mostly relied on documenting algorithms as pseudocode in text. The pseudocode was then translated

Page 3 of 9Excel Services: Develop A Calculation Engine For Your Apps

5/22/2017mk:@MSITStore:C:\Users\Vishwas\Desktop\MSDNMagazineAugust2007en-us.chm::/Ex...

into code by developers. Using Excel Services, we were able to overcome some of the limitations
inherent in the process of creating formulas in Excel and, as a result, eliminated the need for developers
to convert the pseudocode into real code.

The key challenge in allowing non-developers to author calculation logic was to strike a balance
between flexibility and ease of authoring, with the ability to enforce a robust structure. To provide the
structure, we needed a way to define an input and output "interface" that represents the data contract for
a calculation algorithm. Business analysts would be limited to the named ranges that are part of the data
contract for flowing data in and out of the calculation instance.

The obvious choice was to define the data contract using named cells or ranges constructs within Excel.
Named ranges not only accord the required level of granularity for authoring calculations within Excel,
they are also the fundamental data structure on which Excel Services API methods such as SetRange and
GetRange are based. However, the challenge with using named ranges is that there is no standard format
or language, such as XML Schema Definition (XSD) or Web Services Description Language (WSDL),
to define the interface. Moreover, named ranges (and consequently Excel Service API methods) are
inherently type unsafe. For instance, there is no way to enforce datatype checking on a given named
range. Finally, there is no built-in way to enforce the contract across the calculations (inside Excel) and
the Excel Services client program.

To overcome these limitations, we developed a custom two-part solution. The first part is an Excel pre-
compiler designed to generate the named ranges based on a defined interface. The second part is a
generic Excel Web service client that invokes the calculation inside a workbook, while adhering to the
interface.

The Excel Pre-Compiler

XML Schema Definition with all its semantic richness and simplicity, seemed the ideal choice for
defining the interface. We decided to use the XML Schema constructs to define the input and output
contracts. Next, we needed a way to translate the XML Schema into named ranges. We first looked at
the possibility of using the XMLMap feature introduced with Excel 2003. XMLMap allows cells inside
Excel to be mapped to the elements of an imported XML Schema. Unfortunately, the XMLMap
capability is not available to Excel Services. So the alternative was to create the named ranges inside an
Excel workbook. We developed a pre-compiler component that generated a template workbook with the
required named ranges based on the schema. The generated template workbook has three sheets—one
each for input, output, and calculation. The input sheet contains named ranges that correspond to the
input for the calculation. Similarly, the output sheet contains named ranges that correspond to the output
of the calculation, and the calculation sheet is where the calculations are placed (see Figure 3).

Page 4 of 9Excel Services: Develop A Calculation Engine For Your Apps

5/22/2017mk:@MSITStore:C:\Users\Vishwas\Desktop\MSDNMagazineAugust2007en-us.chm::/Ex...

As we stated earlier, programming constructs such as looping are not available to Excel Services. The
pre-compiler compensates for such limitations by transforming the input XML fields into a format that
is accessible without the need for complex programming constructs. For example, XSD element
collections can be transformed into dimensions of the named range. Figure 4 depicts an XSD snippet
that is part of the input data contract for a calculation engine.

Elements TypeA and TypeB are part of the input to the calculation. Note the custom attributes
RangeHeight and RangeWidth that define the dimensions of the named ranges. The pre-compiler uses
this information to generate the named range dimensions. The pre-compiler can also dereference index
fields into separate columns—where each column represents an index value.

A noteworthy aspect of the pre-compiler is the ability to preserve the existing calculations while
regenerating the input and output sheets. As depicted in Figure 5, developing a calculation algorithm is
an iterative process. Business analysts and developers work together to define the initial data contract.
During the course of development of the workbook, input and output contracts may need to be modified,
and the workbook must be regenerated for these changes to be applied. The pre-compiler supports such
iterative development by preserving the calculations sheet while regenerating the workbook.

The input sheet shown in Figure 3 has the pre-generated named ranges. The calculations sheet has
calculations that reference the named ranges defined on the input sheet. The output sheet, in turn,
references the calculations from the calculation sheet.

Figure 3 Workbook Input, Calculation, and Output Sheets
 (Click the image for a larger view)

Figure 5 Generating a Workbook Using the Pre-Compiler

Page 5 of 9Excel Services: Develop A Calculation Engine For Your Apps

5/22/2017mk:@MSITStore:C:\Users\Vishwas\Desktop\MSDNMagazineAugust2007en-us.chm::/Ex...

The Excel Web Service Client

The primary role of the Excel Web service client is to invoke calculations inside the workbook using the
Excel Services API. In doing so, it interprets the XSD-based input contract, mapping the schema
elements into appropriate named ranges. Once the calculation is complete, the client maps the output
named ranges back into an XSD-based output contract. Figure 6 depicts the role of the Excel Web
service client. A typed DataSet (based on the input schema contract) is passed in as input. Data
contained within the DataSet is mapped to input named ranges. Once the calculation is complete, the
output named ranges is used to populate the output DataSet. The Excel Web service client is responsible
for applying the rules defined for the pre-compilers. It is also possible to inject custom data
transformations to alter the aforementioned mapping between XSD and named ranges. Recall our earlier
discussion on the need for compensating the lack of programming constructs available to workbook
authors. Custom data transformations allow mapping to be altered to make it easy for business analysts
to author the calculation logic.

Digging into the Code

The solution we’ve built is composed of four projects. The PreCompiler project houses all the code to
generate a workbook with the required named ranges based on the input and output schema. It takes into
account the aforementioned custom attributes such as RangeHeight while generating the named ranges.
The PreCompiler project in turn relies on SpreadsheetML (an XML-based dialect used to represent
information inside a spreadsheet) for generating the workbook. The SpreadsheetML project contains
simple classes that wrap the SpreadsheetML components such as Workbook, Worksheet, and so forth.

The Client project, as the names suggests, is the Excel Web service client code. It sets the values for the
input named ranges, forces the workbook to recalculate, and retrieves the values for output named
ranges. You will recall that we talked about the need to transform the data to make it easier for business
analysts to develop the calculations. In order to allow data transformation to be customized for each
calculation engine, we externalized the data transformation logic by defining an IDataTransformer
Interface, as shown here:

public interface IDataTransformer

Figure 6 Invoking the Custom Calculation Engine

Page 6 of 9Excel Services: Develop A Calculation Engine For Your Apps

5/22/2017mk:@MSITStore:C:\Users\Vishwas\Desktop\MSDNMagazineAugust2007en-us.chm::/Ex...

{
 object getRangeData(string RangeName);
 object[] getRangeData(string RangeName, int width);
 object[,] getRangeData(string RangeName, int width, int height);

 string getInputSchema();
 string getOutputSchema();

 string getInputSchemaPrefix();
 string getOutputSchemaPrefix();
}

The name of an assembly that contains an implementation of the IDataTransformer interface is passed in
as input to the client program. The client program in turn calls back the appropriate methods on the class
implementing the IDataTransformer interface. In this way, the client program obtains the values that are
used to populate the named ranges. The implementation logic inside the IDataTransformer methods is
responsible for converting the data residing inside the input DataSet to appropriate named range values.
For example, some rows from a DataTable may need to be filtered before populating the appropriate
named ranges. Or the rows within the DataTable might need to be sorted before passing them along to
the workbook. All such data transformation needs can be met using the IDataTransformer interface.

One other class that is important to discuss here is the ExcelServiceFacade. This class hides the Excel
Service API details from the caller. The other important function of this class is to combine individual
SetRange calls into one aggregated SetRange call. This is crucial for reducing the network latency as
each invocation of SetRange causes a round-trip to the server. By exposing a local SetRange call that is
ultimately converted into one aggregated SetRange call, ExcelServiceFacade can dramatically improve
the response times. Figure 7 depicts the relevant ExcelServiceFacade code. An internal buffer is
maintained by the ExcelServiceFacade class that is appended each time a "local" SetRange call is
invoked. Once all the input named ranges have been populated, the internal buffer is sent up to the
server as part of a single call. A similar mechanism is used when retrieving the output named values
after the calculation is complete. Rather than retrieve the values from the output named ranges
individually, we simply retrieve all the values on the output sheet in one fell swoop.

Performance and Scalability

We found the actual execution of the calculations within the workbook to be very fast. In an unscientific
test conducted with a workbook containing a nontrivial set of calculations involving close to one
thousand named ranges, the response time was under one second; the majority of that time was spent on
round-trips to the Excel server. As the load on the system grows in terms of the complexity of the
calculation and the number of concurrent executions, it is possible to scale the solution by leveraging the
various topology options offered by Excel Services. Different topology options allow you to select
where each of the logical Excel Services layers (presentation, application, and database) are placed. For
smaller setups (mainly used for testing purposes), it is possible to deploy all three layers on a single
server. For a medium setup, the presentation and application layers can be installed on a single server,
and the database layer on a separate server. For large setups, you can install each of the three layers on
separate servers. Additionally, you can scale out the presentation layer by adding more servers using a
network load balancer. The application layer comprising the Excel Calculation Services can also be
scaled out using the load balancing schemes supported by the SSP framework. Figure 8 depicts a large
setup where each layer is installed on a separate server. Furthermore, presentation and application layers
are scaled out using load-balancing schemes.

Page 7 of 9Excel Services: Develop A Calculation Engine For Your Apps

5/22/2017mk:@MSITStore:C:\Users\Vishwas\Desktop\MSDNMagazineAugust2007en-us.chm::/Ex...

For computationally intensive workloads, it is also possible to combine Excel Services with the
Compute Cluster Server to seamlessly distribute work to compute nodes, as shown in Figure 9.

As you can see, a custom solution for implementing calculation engine components using Excel
Services is a great productivity boon. It allows you to provide your users with anywhere-access to
custom workbook functions, eliminates the need for a developer to implement the logic, and lets you
scale out your solution as needed. Give it a try. We’re sure you’ll enjoy the increased flexibility and
productivity you’ll gain. For more information, see the "Resources" sidebar.

Resources

l Services Technical Overview
l Determine Resource Requirements to Support Excel Services

Figure 8 Excel Web Services Large Setup

Figure 9 Excel Services High-Performance Setup

Page 8 of 9Excel Services: Develop A Calculation Engine For Your Apps

5/22/2017mk:@MSITStore:C:\Users\Vishwas\Desktop\MSDNMagazineAugust2007en-us.chm::/Ex...

l Creating XML Mappings in Excel 2003

Vishwas Lele is a CTO at Applied Information Sciences (AIS) in Reston, VA. He assists organizations
in envisioning, designing, and implementing enterprise solutions that are based on Microsoft .NET
technologies. Vishwas is the Microsoft Regional Director for the Washington, DC, area. He can be
reached at vlele@acm.org.

Pyush Kumar is a Lead Systems Architect for Watson Wyatt Worldwide. He’s been working most
recently on grid computing and large-scale software design for the .NET Framework. You can reach him
at pyush.kumar@watsonwyatt.com.

© 2007 Microsoft Corporation and CMP Media, LLC. All rights reserved; reproduction in part or in
whole without permission is prohibited.

Page 9 of 9Excel Services: Develop A Calculation Engine For Your Apps

5/22/2017mk:@MSITStore:C:\Users\Vishwas\Desktop\MSDNMagazineAugust2007en-us.chm::/Ex...

